Increasing the Water Use Efficiency of Irrigated and Dryland Cotton with Cover Crops

Tyson B. Raper

Assistant Professor, Cotton and Small Grains Specialist,
University of Tennessee, Knoxville

• Cotton Inc. sponsored a project to examine the use of cover crops to increase infiltration and soil water-holding capacity. Strips of wheat cover crops and fallow plots were placed on an irrigated, eroded hillside, and soil moisture sensors were inserted for monitoring.

• Observations:
  o Incorporating a wheat cover crop increased the volumetric water content throughout the growing season by 6–8%.
  o In the plots of wheat cover crops, sensors registered light-rainfall events, indicating that the water remained in profile. Sensors in the fallow plots did not register these events.
  o A 111-pound increase in yield per acre was reported for the cover crop plots.
  o The same results have been observed in production systems using cover crops versus no-till.

• Integrating a cover crop is arguably the easiest way to increase water use efficiency in dryland and irrigated production.
  o Dryland production: Increased infiltration and water-holding capacity in year 1.
  o Irrigated production: Reduced time in which the soil stays saturated after irrigation events, and an increase in the quantity of water that can be applied per turn.
  o Species selection: Select species that will persist for longer periods throughout the season, such as heavy monocot mixtures.

• Conclusions:
  o Cotton agronomics:
    ▪ The water demands of a developing cotton crop are rarely met completely by the environment.
    ▪ Cotton is an indeterminate, drought-tolerant plant that does not perform well under saturated soil conditions.
  o Cover crop integration:
    ▪ Supports increased infiltration and water-holding capacity in year 1.
    ▪ Allows less frequent, more thorough irrigation events.