How to Characterize Rust Isolates: Genome Sequencing, Molecular Markers and Differentials

Dr. Reid D. Frederick
USDA-Agricultural Research Service
Foreign Disease-Weed Science Research Unit
Fort Detrick, MD

Phone: 301-619-7386
Email: rfrederick@fdwsr.ars.usda.gov
Pathogen Genome Sequencing Project
Cooperative Agreement between USDA-ARS & DOE/Joint Genome Institute

- Identify target sequences for molecular diagnostics and isolate identification.
- Identify biochemical pathways as targets for new fungicides.
- Identify candidates for genes mediating host-pathogen responses.
- Determine evolutionary relationships with other fungi.
Genomic Approaches

- Comparative genomic sequencing project
 - *P. pachyrhizi* & *P. meibomiae*

- Gene expression (Expressed Sequence Tags)
 - Germinating urediniospores
 - cDNA libraries from infected soybean plants

Cooperative Agreement between USDA-ARS & DOE/Joint Genome Institute
Genome sequencing project

<table>
<thead>
<tr>
<th>Library (Insert size)</th>
<th>Bases sequenced</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. pachyrhizi 3 Kb</td>
<td>153 MB</td>
</tr>
<tr>
<td>P. pachyrhizi 8 Kb</td>
<td>546 MB</td>
</tr>
<tr>
<td>P. pachyrhizi 40 Kb</td>
<td>6 MB</td>
</tr>
<tr>
<td></td>
<td>705 MB</td>
</tr>
<tr>
<td>P. meibomiae 3 Kb</td>
<td>125 MB</td>
</tr>
<tr>
<td>P. meibomiae 8 Kb</td>
<td>6 MB</td>
</tr>
<tr>
<td></td>
<td>131 MB</td>
</tr>
</tbody>
</table>

Trace records (raw single-pass reads of DNA sequence) released by the DOE-JGI, available at the GenBank: 840.789 Mbp

Fosmid Sequencing Strategy

Random fosmids: Finishing at Stanford Genome Technology Center (SGTC): 109 complete; 6 incomplete

Selected fosmids: Hybridizations at Lawrence Livermore National Laboratory (LLNL). Probes designed to 100 “genes” with high homology to pathogenicity related genes, important metabolic pathway genes or genes highly expressed during spore germination.

65 fosmids selected; 17 finished at SGTC.
P. pachyrhizi mtDNA

31,820bp
Comparison of mitochondrial genomes from the four phyla of fungi. Protein-coding and rRNA genes are represented by boxes; arrows indicate the direction of transcription. Lines within genes represent presence of intron(s).
Phakopsora pachyrhizi EST Project
Frequency of occurrence of multiple clones in the *Phakopsora pachyrhizi* cDNA library from germinating urediniospores.
Classification of 189 unique *Phakopsora pachyrhizi* ESTs from germinating urediniospores. ESTs with significant similarities (BLASTX *E*-value < 10^{-5}) to the “nr” database grouped into functional categories according to EGAD.
Expressed sequence tag analysis of the soybean rust pathogen
Phakopsora pachyrhizi

Martha Lucia Posada-Buitrago *, Reid D. Frederick

USDA-Agricultural Research Service, Foreign Disease-Weed Science Research Unit, 1301 Ditto Avenue, Fort Detrick, MD 21702, USA
Received 5 November 2004; accepted 10 June 2005

Abstract

Soybean rust is caused by the obligate fungal pathogen Phakopsora pachyrhizi Sydow. A unidirectional cDNA library was constructed using mRNA isolated from germinating P. pachyrhizi urediniospores to identify genes expressed at this physiological stage. Single pass sequence analysis of 908 clones revealed 488 unique expressed sequence tags (ESTs, unigenes) of which 107 appeared as multiple copies. BLASTX analysis identified 189 unigenes with significant similarities (E-value < 10^-5) to sequences deposited in the NCBI non-redundant protein database. A search against the NCBI dbEST using the BLASTN algorithm revealed 32 ESTs with high or moderate similarities to plant and fungal sequences. Using the Expressed Gene Anatomy Classification, 31.7% of these ESTs were involved in primary metabolism, 14.3% in gene/protein expression, 7.4% in cell structure and growth, 6.9% in cell division, 4.8% in cell signaling/cell communication, and 4.8% in cell/organism defense. Approximately 29.6% of the identities were to hypothetical proteins and proteins with unknown function.
© 2005 Published by Elsevier Inc.

Keywords: Phakopsora pachyrhizi; Genome analysis; cDNA sequencing; Expressed sequence tags; Gene expression
mRNA was extracted from infected leaf at each time point and pooled together for the construction of the cDNA libraries.

Unidirectional cDNA libraries constructed in plasmid pSPORT1.
Simple Sequence
Repeats
(Microsatellites)
Microsatellites/SSRs

<table>
<thead>
<tr>
<th>Class</th>
<th>Example Motiff</th>
<th>Repeat Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Di</td>
<td>CA</td>
<td>12</td>
</tr>
<tr>
<td>Tri</td>
<td>ATG</td>
<td>6</td>
</tr>
<tr>
<td>Tetra</td>
<td>ATCG</td>
<td>5</td>
</tr>
<tr>
<td>Penta</td>
<td>AGTTG</td>
<td>4</td>
</tr>
<tr>
<td>Hexa</td>
<td>CCCCCAA</td>
<td>3</td>
</tr>
</tbody>
</table>
SSRs: Marker development
SSRs: Marker development
SSR polymorphism: pp002

- 239 251
- 251 257
- 242
- 239 251 257
- 248
upgma cluster and tree
Rust Reactions

<table>
<thead>
<tr>
<th>Entry</th>
<th>TW</th>
<th>TH</th>
<th>PH</th>
<th>ZM</th>
<th>SA</th>
<th>BZ</th>
<th>PG</th>
<th>AU</th>
<th>IN</th>
<th>HW</th>
<th>BZ</th>
<th>PR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Williams</td>
<td>Y</td>
</tr>
<tr>
<td>PI548628 (Wayne)</td>
<td>Y</td>
</tr>
<tr>
<td>PI200492 (Rpp1)</td>
<td>Y</td>
</tr>
<tr>
<td>PI230970 (Rpp2)</td>
<td>Y</td>
</tr>
<tr>
<td>PI462312 (Rpp3)</td>
<td>Y</td>
</tr>
<tr>
<td>PI459025B (Rpp4)</td>
<td>Y</td>
</tr>
<tr>
<td>PI268039 (Tainung #)</td>
<td>Y</td>
</tr>
</tbody>
</table>

- **P. pachyrhizi**
 - Yellow: Tan
 - Brown: Intermediate
 - Red-brown: Red-brown
 - Green: Immune

- **Pm**
 - Yellow: Tan
 - Brown: Intermediate
 - Red-brown: Red-brown
 - Green: Immune
Acknowledgements

- **FDWSRU:**
 - Sharon Anderson & Christine Stone
 - Morris Bonde, Susan Nester & Doug Luster

- **NCI-Advanced Biomedical Computing Center:**
 - Beena Neelam

- **DOE-Joint Genome Institute:**
 - Martha Lucia Posada, Jeffrey Boore, Susan Lucas, Jared Chapman, Nik Putnam, Peter Brokstein & Harris Shapiro

- **DOE-Lawrence Livermore National Laboratory:**
 - Tom Slezak & Laurie Gordon
AGRICULTURAL RESEARCH SERVICE

FOREIGN DISEASE-WEED SCIENCE RESEARCH UNIT